
Towards a DSL for Agile Measurement and Visualization Patterns
Larry Maccherone

 Institute for Software Research - Carnegie Mellon University
Larry@Maccherone.com

Abstract
There is little guidance available (beyond velocity and
burn down) on how to do measurement for agile
projects. Principle-based advice often sounds like it
came from pre-agile thinking by calling for predeter-
mined questions and indicators. Flexible analysis tools
like spreadsheets lack necessary support for the do-
main. My research starts with the identification of a set
of reusable measurement and visualization patterns for
software processes. From that, I have created tooling
that allows software development teams to easily de-
fine their own measurement systems and conduct ad-
hoc inquiry. It assumes that given the right tools, the
folks doing the work are better able to interpret the
data than a predetermined indicator.

1. Introduction
Agile practices are predicated on the idea that trying to
apply someone else’s process template to your situa-
tion is rarely ideal and often counterproductive. Rather,
the agile approach is principled-based, requiring you to
adapt as you learn and your situation changes. For this
reason, you don’t see explicit guidance on exactly what
measures to use in your agile project, with the notable
exception of guidance on how to calculate velocity and
generate burn down charts. Any measurement needs
beyond this are typically satisfied with a spreadsheet.

So on the surface, it appears that the approach matches
the agile philosophy – start with principles and use a
flexible tool to do what you think is best. However,
there are several problems with this:
1. Predetermined questions and indicators. Much

of the principles and guidance published under the
auspices of “Agile Measurement” advises you to
predetermine questions and indicators for your
measurements ([1), (2). This runs contrary to
another agile principle which says to maximize vi-
sibility and let the team decide how to interpret the
information.

2. Measurement and visualization patterns. While
the available guidance goes too far in requiring
teams to design measures with predetermined in-
dicators, it does not go far enough in providing

useful assistance in the form of reusable measure-
ment and visualization patterns.

3. Spreadsheets inadequate. Spreadsheets and other
flexible analytical tools lack features specifically
targeted at the unique needs of software process
measurement. For instance, they may support the
ability to query sales figures from your SAP instal-
lation but they lack the ability to easily consume
data passively accumulating in your source code
repository.

My research specifically targets these three shortcom-
ings. The work started by first identifying a list of pat-
terns commonly found in software process measure-
ment. A domain specific language (DSL) is now being
evolved to realize those patterns. This DSL takes into
account the constructs typically found in software de-
velopment projects (source code repositories, issue
databases, code hierarchies, releases, iterations, artifact
dependencies, teams, coordination needs, etc.). Using
these patterns and the DSL, teams can easily define
their own measurement systems. The approach works
well when you happen to know the questions or trouble
indicators up front, but it works equally well in an ad-
hoc fashion to enable problem identification, trend
detection, and decision making even in the absence of
predetermined indicators.

2. Illustrating example
Let us say your team has just completed its seventh
iteration. You notice that your velocity has slowed
down considerably for the last several iterations and if
it does not pick back up, you will not be able to deliver
the desired amount of functionality in the time remain-
ing. You start to brainstorm about how to bring the
velocity up. Someone suggests that the problem is due
to accumulated technical debt. The resulting nods and
groans indicate consensus.

So the code has gotten crufty. What do you do about
it? Do you dedicate an iteration to refactoring? Will
that cost you more than it will save in the remaining
time? How do you figure out if it will be worth it?

You remember that the two folks, Mary and John, on
the team who are primarily working on the UI layer
actually did a refactoring of their code in iteration five.

They had been part of a lunch-time reading group
which had just finished reading the Head First Design
Patterns book. Mary and John wanted to refractor their
code to apply what they had learned and to make the
code more evolvable.

Mary and John indicate that they enjoy working with
the code more since the refactoring. Great, but how can
you tell if that decision has a net positive RIO before
the first release date? You decide to explore and you
query the source code repository and generate the fol-
lowing graph.

From the graph, you notice that your velocity generally
tracks the net added LOC (R2=0.75) which is calcu-
lated by subtracting the lines deleted from the lines
added. You also notice the spike in iteration five for
the deleted and churn measures. That was the iteration
where the UI sub-team did their refactoring. Next, you
decide to see if their net added LOC trajectory was
improved after their refactoring. My tools allow you to
slice the data based upon a hierarchy delimiter in a
particular field. In this case, you know that all the UI
code is contained under the subdirectory of “ui/*”. You
can easily select that sub-directory and chart it.

The UI sub-team actually had a negative number for
net added LOC in iteration five, but in the two itera-
tions following, they were back up to their original
level. Furthermore, it is only two data points, but it
doesn’t appear to be decreasing as rapidly as it was
before.

Using the experience of the UI sub-team as a model for
what would happen to the rest of the team (not guaran-

teed but your best judgment based upon the informa-
tion you have), you project that you will be better off
if you spend the next iteration paying down some of
your technical debt.

This approach to measurement allows you to explore
the data, and put it in context with information you
know (like the refactoring done by the UI team). It
allows you to notice patterns and then helps you take
the next step. It assumes that, given the right tools, the
folks doing the work are better able to interpret the
data than a predetermined indicator.

3. The DSL
You create measures and visualizations with a declara-
tive JSON-based DSL. Consider the following data
from a source code repository commit log:
commit date file del added
1 2009-01-01 db/node/visitor 0 54
2 2009-01-02 db/node/observer 0 130
2 2009-01-02 ui/button 0 276
3 2009-01-03 db/node/observer 7 10

To extract measures, the first operation is to create an
online analytical processing (OLAP) cube. The term
comes from the business intelligence (BI) community.
It is essentially the same idea as a pivot table in a
spreadsheet. It enables the bucketing of data based
upon multiple dimensions. Here is the DSL:

// OLAP Cube definition
{
 calculated_fields: [
 {name:”churn”, expression:”del + added”},
 {name:”net”, expression:”added – del”}
],
 dimensions: [
 {field:”commit”},
 {field:”date”},
 {field:”file”,
 hierarchy_type:”delimited”,
 delimiter:”/”
 }
],
 measures: [
 {field:”del”, type:”SUM”},
 {field:”added”, type:”SUM”},
 {field:”churn”, type:”SUM”},
 {field:”net”, type:”SUM”},
 {field:”file”, type:”COUNT”, name:”count”}
]
}

The DSL to summarize the churn measure is:
// OLAP Pivot Table View definition
{row:”file”,
 column:”date”,
 measures:[“churn”]
}

0

1000

2000

3000

4000

1 2 3 4 5 6 7

LOC and Velocity
Added

Deleted

Churn

Net Added

Velocity * 50

-500

0

500

1000

1 2 3 4 5 6 7

Net Added for UI Sub-team

This would result in a pivot table for churn as follows:
 2009-01-01 2009-01-02 2009-01-03

- db/node 54 130 17
 visitor 54 0 0
 observer 0 130 17
+ ui/button 0 276 0
 Total 54 406 17

If you were to run this analysis on the full commit log,
you could identify which parts of the code underwent
churn and at what time. The tooling also makes it easy
to group the columns into a release/iteration hierarchy
but that is not shown in this simple example.

Notice how the system was able to understand the hie-
rarchy of code sub-directories and key off of the “/” to
group the measures appropriately. You can expand or
collapse these groupings at any level. Furthermore, you
can generate graphs at any level.

3.1. Creating networks with the DSL
The DSL includes support for viewing measures in the
context of an entity relationship graph. This functional-
ity will make a connection between two artifacts by
figuring out which file are frequently committed to-
gether. This turns out to be a surprisingly good heuris-
tic for determining artifact interdependency (3) that
works even in situations where code analysis fails (dif-
ferent programming languages, non-call-graph depen-
dencies, etc.).

We use the same OLAP cube as the previous example;
however we use a network view. Here is the DSL to
aggregate the number of times two files have been
committed together:
// OLAP Network View definition
{nodes:”file”,
 edges:”commit”,
 edge_weight:”count”,
 node_size:”count”
}

The above code results in a matrix as follows:

d
b
/
n
o
d
e
/
v
i
s
i
t
o
r

d
b
/
n
o
d
e
/
o
b
s
e
r
v
e
r

u
i
/
b
u
t
t
o
n

db/node/visitor 1 0 0
db/node/observer 0 2 1
ui/button 0 1 1

The diagonal represents the number of times a particu-
lar file was committed. The other cells represent the
number of times two different files were committed

together. In this case, the only two files ever committed
together were “db/node/observer” and “ui/button”. The
visualization for the above data looks as follows:

4. Tesseract: a larger system that can be
built with the DSL and tools

The DSL and tooling are being used to re-create a sys-
tem named Tesseract, about which a paper has been
accepted for publication at ICSE 2009. The original
version of Tesseract was built by hand and my role on
the team was as primary implementer. This allowed me
to understand what facilities were needed to easily
construct such a system from my DSL. Tesseract is
being re-built using my DSL and tooling as I add the
capability to address that particular aspect. For the
parts that have already been converted, there is an 11:1
reduction in the lines of code necessary to re-create the
functionality.

Tesseract analyzes different project archives, such as
source code repositories, issue databases, and commu-
nication records to determine the interrelationships,
which are then graphically displayed via four juxta-
posed panes, enabling users to easily explore the data
set.

The critical advantage of Tesseract’s approach is that it
enables the interactive exploration of the different con-
nections among different project entities. Users can
change the perspective of their investigation by drilling
down on specific artifact(s) or developer(s). As an ex-
ample, a user might drill-down to only the developers
he personally knows to find whether any of his ac-
quaintances have expertise which would help with his
current task. Other user actions to facilitate investiga-
tions include: 1) highlighting, in yellow, all related
entities in the other panes, and 2) hovering over a node
to display additional information and measures related
to the node.

4.1. Tesseract usage scenario
Figure 1 provides two snapshots of project history for a
large open source software project: one relatively ear-
ly, the other later. We can make the following observa-
tions from Figure 1 (top): 1) Stephen Walther is the
primary contributor having changed literally every file
(every node in the upper left is yellow when we click
on Stephen in the upper right); 2) Stephen is central
and in contact with most other developers (green lines

db/node/observer

db/node/visitor

ui/button

Figure 1 - Leadership patterns

between Stephen and other developers), but very few
developers are communicating among themselves (red
lines); 3) the file network is densely connected indicat-
ing a high degree of coupling; and 4) this time period
shows a continuously increasing list of open issues
(stacked area chart on the bottom).

When we investigate a later time period, Figure 1 (bot-
tom), under a different leader, Alicia, we see very dif-
ferent patterns in the percentage of files directly edited
by Alicia, communication channels, artifact dependen-
cy, and the trend for open issues. From this view, it is
impossible to tell if there is a causal relationship and
what that might be. However, the team doing the work
might propose some explanation and they may even be
able to use the tool to confirm their hypothesis.

5. Advantages over using a spreadsheet or
BI tool

Direct use of a spreadsheet or BI tool to accomplish
software measurement goals can be frustrating. These
tools were designed with the business decision maker
in mind and include features that are targeted at that
market. We need similar domain specific features for
software measurements in order to see widespread use
in our field. Existing spreadsheet and BI tools lack
direct support for:
• Querying source code repositories and issue data-

bases
• Organizing time hierarchies by release/iteration

instead of year/quarter/month
• Building hierarchies from delimiters like those

indicated by “/”, “\”, or “.” in artifact URIs
• Placing measures on an artifact dependency or

team member relationship map as opposed to a
geographical one.

6. Plan for dissertation
To validate my work, I plan to do the following:
• Finish the conversion of Tesseract to using the

new DSL and measure the final reduction in lines
of code (currently 11:1).

• Reproduce one other system and measure the time
it takes to accomplish the conversion as well as the
reduction in lines of code.

• Conduct an end user study to determine the diffi-
culty of training the DSL and other usability is-
sues.

• Conduct a longitudinal study where and Agile
team uses the tools.

Desired outcomes of the Ph. D. symposium at
Agile2009 include:
• Feedback on the overall goals and approach

• Feedback on adequacy of validation planned
• Possible volunteers for studies.

7. Advisors
Bill Scherlis and Watts Humphrey

8. References

1. Gilb, Tom and Brodie, Lindsey. What's Wrong

With Agile Methods: Some Principles and Values
to Encourage Quantification. Methods and Tools.
Summer 2007.

2. Appropriate Agile Measurement: Using Metrics and
Diagnostics to Deliver Business Value. Hartmann,
Deborah and Dymond, Robin. 2006. Agile
Conference.

3. Communication Networks in Geographically
Distributed Software Development. Cataldo,
Marcelo and Herbsleb, Jim. 2008. CSCW. pp.
579-588.

	Introduction
	Illustrating example
	The DSL
	Creating networks with the DSL

	Tesseract: a larger system that can be built with the DSL and tools
	Tesseract usage scenario

	Advantages over using a spreadsheet or BI tool
	Plan for dissertation
	Advisors
	References

